
Gas-Phase Fragmentation of [M + nH + OH]n•+ Ions Formed from Peptides Containing Intra-Molecular Disulfide Bonds
Author(s) -
Xiaoxiao Ma,
Chasity B. Love,
Xinrong Zhang,
Yu Xia
Publication year - 2011
Publication title -
journal of the american society for mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.961
H-Index - 127
eISSN - 1879-1123
pISSN - 1044-0305
DOI - 10.1007/s13361-011-0104-1
Subject(s) - chemistry , fragmentation (computing) , dissociation (chemistry) , ion , collision induced dissociation , mass spectrometry , ion trap , crystallography , analytical chemistry (journal) , tandem mass spectrometry , organic chemistry , chromatography , computer science , operating system
In this study, we systematically investigated gas-phase fragmentation behavior of [M + nH + OH](n•+) ions formed from peptides containing intra-molecular disulfide bond. Backbone fragmentation and radical initiated neutral losses were observed as the two competing processes upon low energy collision-induced dissociation (CID). Their relative contribution was found to be affected by the charge state (n) of [M + nH + OH](n•+) ions and the means for activation, i.e., beam-type CID or ion trap CID. Radical initiated neutral losses were promoted in ion-trap CID and for lower charge states where mobile protons were limited. Beam-type CID and dissociation of higher charge states of [M + nH + OH](n•+) ions generally gave abundant backbone fragmentation, which was highly desirable for characterizing peptides containing disulfide bonds. The amount of sequence information obtained from CID of [M + nH + OH](n•+) ions was compared with that from CID of disulfide bond reduced peptides. For the 11 peptides studied herein, similar extent of sequence information was obtained from these two methods.