
Where does the cargo go?: Solutions to provide experimental support for the “extracellular vesicle cargo transfer hypothesis”
Author(s) -
Somiya Masaharu
Publication year - 2020
Publication title -
journal of cell communication and signaling
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.329
H-Index - 44
eISSN - 1873-961X
pISSN - 1873-9601
DOI - 10.1007/s12079-020-00552-9
Subject(s) - endocytosis , cytoplasm , microbiology and biotechnology , extracellular vesicles , extracellular vesicle , extracellular , biology , intracellular , function (biology) , exosome , microvesicles , chemistry , cell , microrna , genetics , gene
It is widely believed that extracellular vesicles (EVs) mediate intercellular communications by functioning as messengers. EVs contain various biomolecules, including nucleic acids and proteins, as cargo in the internal space. Thus, it has been postulated that this cargo can be transferred from donor cells to recipient cells, leading to phenotypic changes in the recipient cells. However, there is a lack of experimental evidence for the aforementioned hypothesis, that EVs function as messengers. This is presumably because of a lack of rigorous methodologies for EV research. Although cells usually incorporate nanoparticles (NPs) from the extracellular space via endocytosis, these NPs are processed through the endo/lysosomal system and do not escape to the cytoplasm unless they disrupt or fuse with the endo/lysosomal membrane. Whether EVs actually are capable of escaping endo/lysosomes is still debatable. In contrast, viruses have evolved to efficiently deliver their cargo (viral proteins and genetic material) into the cytoplasm of host (recipient) cells by circumventing endo/lysosomal degradation. Thus, it may be helpful to compare EVs to viruses in terms of cargo delivery. The present technological issues that hinder obtaining support for the “EV cargo transfer hypothesis” are summarized and potential solutions for EV research are proposed.