z-logo
open-access-imgOpen Access
ACE for all – a molecular perspective
Author(s) -
Harrison Charlotte,
Acharya K. Ravi
Publication year - 2014
Publication title -
journal of cell communication and signaling
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.329
H-Index - 44
eISSN - 1873-961X
pISSN - 1873-9601
DOI - 10.1007/s12079-014-0236-8
Subject(s) - enzyme , biology , renin–angiotensin system , angiotensin converting enzyme , genome , computational biology , biochemistry , gene , blood pressure , endocrinology
Angiotensin‐I converting enzyme (ACE, EC 3.4.15.1) is a zinc dependent dipeptidyl carboxypeptidase with an essential role in mammalian blood pressure regulation as part of the renin‐angiotensin aldosterone system (RAAS). As such, it has long been targeted in the treatment of hypertension through the use of ACE inhibitors. Although ACE has been studied since the 1950s, only recently have the full range of functions of this enzyme begun to truly be appreciated. ACE homologues have been found in a host of other organisms, and are now known to be conserved in insects. Insect ACE homologues typically share over 30 % amino acid sequence identity with human ACE. Given that insects lack a mammalian type circulatory system, they must have crucial roles in other physiological processes. The first ACE crystal structures were reported during the last decade and have enabled these enzymes to be studied from an entirely different perspective. Here we review many of these key developments and the implications that they have had on our understanding of the diverse functions of these enzymes. Specifically, we consider how structural information is being used in the design of a new generation of ACE inhibitors with increased specificity, and how the structures of ACE homologues are related to their functions. The Anopheles gambiae genome is predicted to code for ten ACE homologues, more than any genome studied so far. We have modelled the active sites of some of these as yet uncharacterised enzymes to try and infer more about their potential roles at the molecular level.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here