
Encapsulation of eukaryotic cells in alginate microparticles: cell signaling by TNF‐alpha through capsular structure of cystic fibrosis cells
Author(s) -
Mazzitelli Stefania,
Borgatti Monica,
Breveglieri Giulia,
Gambari Roberto,
Nastruzzi Claudio
Publication year - 2011
Publication title -
journal of cell communication and signaling
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.329
H-Index - 44
eISSN - 1873-961X
pISSN - 1873-9601
DOI - 10.1007/s12079-010-0105-z
Subject(s) - cystic fibrosis , microbiology and biotechnology , cell encapsulation , chemokine , tissue engineering , secretion , chemistry , cell , immunology , biology , biomedical engineering , inflammation , medicine , biochemistry
Entrapment of mammalian cells in natural or synthetic biomaterials represents an important tool for both basic and applied research in tissue engineering. For instance, the encapsulation procedures allow to physically isolate cells from the surrounding environment, after their transplantation maintaining the normal cellular physiology. The first part of the current paper describes different microencapsulation techniques including bulk emulsion technique, vibrating‐nozzle procedure, gas driven mono‐jet device protocol and microfluidic based approach. In the second part, the application of a microencapsulation procedure to the embedding of IB3‐1 cells is also described. IB3‐1 is a bronchial epithelial cell line, derived from a cystic fibrosis (CF) patient. Different experimental parameters of the encapsulation process were analyzed, including frequency and amplitude of vibration, polymer pumping rate and distance between the nozzle and the gelling bath. We have found that the microencapsulation procedure does not alter the viability of the encapsulated IB3‐1 cells. The encapsulated IB3‐1 cells were characterized in term of protein secretion, analysing the culture medium by Bio‐Plex strategy. The analyzed factors include members of the interleukin family (IL‐6), chemokines (IL‐8 and MCP‐1) and growth factors (G‐CSF). The experiments demonstrated that most of the analyzed proteins, were secreted both by the free and encapsulated cells, even if in a different extent.