Kummer’s conjecture for cubic Gauss sums
Author(s) -
D. R. HeathBrown
Publication year - 2000
Publication title -
israel journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.168
H-Index - 63
eISSN - 1565-8511
pISSN - 0021-2172
DOI - 10.1007/s11856-000-1273-y
Subject(s) - mathematics , combinatorics , conjecture , gauss , gauss sum , order (exchange) , cubic function , quadratic gauss sum , quadratic equation , lambda , upper and lower bounds , distribution (mathematics) , algebraic number field , character (mathematics) , mathematical analysis , geometry , physics , quantum mechanics , finance , economics
It is shown that the normalized cubic Gauss sums for integers c ≡ 1 ((mod 3)) of the field $${\Bbb Q}(\sqrt { - 3} )$$ satisfy $${\sum\limits_{N(c) \leqslant X} {\tilde g(c)\Lambda (c)\left( {\frac{c}{{\left| c \right|}}} \right)} ^l} \ll {}_\varepsilon {X^{5/6 + \varepsilon }} + \left| l \right|{X^{3/4 + \varepsilon }},$$ for every l ∈ ℤ and any ε > 0. This improves on the estimate established by Heath-Brown and Patterson [4] in demonstrating the uniform distribution of the cubic Gauss sums around the unit circle. When l = 0 it is conjectured that the above sum is asymptotically of order X5/6, so that the upper bound is essentially best possible. The proof uses a cubic analogue of the author’s mean value estimate for quadratic character sums [3].
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom