How large dimension guarantees a given angle?
Author(s) -
Viktor Harangi,
Tamás Keleti,
Gergely Kiss,
Péter Maga,
András Máthé,
Pertti Mattila,
Balázs Strenner
Publication year - 2012
Publication title -
monatshefte für mathematik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 37
eISSN - 1436-5081
pISSN - 0026-9255
DOI - 10.1007/s00605-012-0455-0
Subject(s) - hausdorff dimension , dimension (graph theory) , mathematics , euclidean space , combinatorics , space (punctuation) , euclidean geometry , geometry , physics , mathematical analysis , computer science , operating system
We study the following two problems:(1) Given $n\ge 2$ and $\al$, how largeHausdorff dimension can a compact set $A\su\Rn$ have if $A$ does not containthree points that form an angle $\al$? (2) Given $\al$ and $\de$, how largeHausdorff dimension can a compact subset $A$ of a Euclidean space have if $A$does not contain three points that form an angle in the $\de$-neighborhood of$\al$? Some angles ($0,60^\circ,90^\circ, 120^\circ, 180^\circ$) turn out tobehave differently than other $\al\in[0,180^\circ]$.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom