z-logo
open-access-imgOpen Access
How large dimension guarantees a given angle?
Author(s) -
Viktor Harangi,
Tamás Keleti,
Gergely Kiss,
Péter Maga,
András Máthé,
Pertti Mattila,
Balázs Strenner
Publication year - 2012
Publication title -
monatshefte für mathematik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 37
eISSN - 1436-5081
pISSN - 0026-9255
DOI - 10.1007/s00605-012-0455-0
Subject(s) - hausdorff dimension , dimension (graph theory) , mathematics , euclidean space , combinatorics , space (punctuation) , euclidean geometry , geometry , physics , mathematical analysis , computer science , operating system
We study the following two problems:(1) Given $n\ge 2$ and $\al$, how largeHausdorff dimension can a compact set $A\su\Rn$ have if $A$ does not containthree points that form an angle $\al$? (2) Given $\al$ and $\de$, how largeHausdorff dimension can a compact subset $A$ of a Euclidean space have if $A$does not contain three points that form an angle in the $\de$-neighborhood of$\al$? Some angles ($0,60^\circ,90^\circ, 120^\circ, 180^\circ$) turn out tobehave differently than other $\al\in[0,180^\circ]$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom