z-logo
open-access-imgOpen Access
Large Monotone Paths in Graphs with Bounded Degree
Author(s) -
Raphael Yuster
Publication year - 2001
Publication title -
graphs and combinatorics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.59
H-Index - 40
eISSN - 1435-5914
pISSN - 0911-0119
DOI - 10.1007/s003730170031
Subject(s) - combinatorics , mathematics , degree (music) , monotone polygon , bounded function , simple graph , graph , integer (computer science) , discrete mathematics , path (computing) , mathematical analysis , physics , geometry , acoustics , programming language , computer science
.   We prove that for every ε>0 and positive integer r, there exists Δ0=Δ0(ε) such that if Δ>Δ0 and n>n(Δ,ε,r) then there exists a packing of K n with ⌊(n−1)/Δ⌋ graphs, each having maximum degree at most Δ and girth at least r, where at most εn 2 edges are unpacked. This result is used to prove the following: Let f be an assignment of real numbers to the edges of a graph G. Let α(G,f) denote the maximum length of a monotone simple path of G with respect to f. Let α(G) be the minimum of α(G,f), ranging over all possible assignments. Now let αΔ be the maximum of α(G) ranging over all graphs with maximum degree at most Δ. We prove that Δ+1≥αΔ≥Δ(1−o(1)). This extends some results of Graham and Kleitman [6] and of Calderbank et al. [4] who considered α(K n ).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom