Banana waste as substrate for α-amylase production by Bacillus subtilis (CBTK 106) under solid-state fermentation
Author(s) -
C. Krishna,
M. Chandrasekaran
Publication year - 1996
Publication title -
applied microbiology and biotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.074
H-Index - 221
eISSN - 1432-0614
pISSN - 0175-7598
DOI - 10.1007/s002530050790
Subject(s) - solid state fermentation , amylase , maltose , food science , stalk , bran , starch , sodium nitrate , chemistry , substrate (aquarium) , potassium , fermentation , potassium nitrate , sodium , banana peel , sucrose , horticulture , biochemistry , biology , enzyme , organic chemistry , raw material , ecology
Bacillus subtilis CBTK 106, isolated from banana wastes, produced high titres of α-amylase when banana fruit stalk was used as substrate in a solid-state fermentation system. The effects of initial moisture content, particle size, cooking time and temperature, pH, incubation temperature, additional nutrients, inoculum size and incubation period on the production of α-amylase were characterised. A maximum yield of 5 345 000 U mg-1 min-1 was recorded when pretreated banana fruit stalk (autoclaved at 121 °C for 60 min) was used as substrate with 70% initial moisture content, 400 μm particle size, an initial pH of 7.0, a temperature of 35 °C, and additional nutrients (ammonium sulphate/sodium nitrate at 1.0%, beef extract/peptone at 0.5%, glucose/sucrose/starch/maltose at 0.1% and potassium chloride/sodium chloride at 1.0%) in the medium, with an inoculum-to-substrate ratio of 10% (v/w) for 24 h. The enzyme yield was 2.65-fold higher with banana fruit stalk medium compared to wheat bran.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom