On the first cohomology of arithmetic groups
Author(s) -
C. S. Rajan,
T. N. Venkataramana
Publication year - 2001
Publication title -
manuscripta mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.752
H-Index - 46
eISSN - 1432-1785
pISSN - 0025-2611
DOI - 10.1007/s002290100196
Subject(s) - mathematics , cohomology , čech cohomology , group cohomology , injective function , equivariant cohomology , pure mathematics , étale cohomology , sheaf cohomology , number theory , arithmetic , de rham cohomology , algebra over a field
: We study the restriction to smaller subgroups, of cohomology classes on arithmetic groups (possibly after moving the class by Hecke correspondences), especially in the context of first cohomology of arithmetic groups. We obtain vanishing results for the first cohomology of cocompact arithmetic lattices in SU(n,1) which arise from hermitian forms over division algebras D of degree p 2, p an odd prime, equipped with an involution of the second kind. We show that it is not possible for a ‘naive’ restriction of cohomology to be injective in general. We also establish that the restriction map is injective at the level of first cohomology for non co-compact lattices, extending a result of Raghunathan and Venkataramana for co-compact lattices.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom