z-logo
open-access-imgOpen Access
The relation between the Baum-Connes Conjecture and the Trace Conjecture
Author(s) -
Wolfgang Lück
Publication year - 2002
Publication title -
inventiones mathematicae
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.536
H-Index - 125
eISSN - 1432-1297
pISSN - 0020-9910
DOI - 10.1007/s002220200215
Subject(s) - mathematics , conjecture , trace (psycholinguistics) , equivariant map , isomorphism (crystallography) , combinatorics , center (category theory) , pure mathematics , homology (biology) , cyclic homology , discrete mathematics , philosophy , linguistics , crystal structure , chemistry , biochemistry , cohomology , gene , crystallography
.   We prove a version of the L 2-index Theorem of Atiyah, which uses the universal center-valued trace instead of the standard trace. We construct for G-equivariant K-homology an equivariant Chern character, which is an isomorphism and lives over the ring ℤ⊂λ G ⊂ℚ obtained from the integers by inverting the orders of all finite subgroups of G. We use these two results to show that the Baum-Connes Conjecture implies the modified Trace Conjecture, which says that the image of the standard trace K 0(C * r (G))→ℝ takes values in λ G . The original Trace Conjecture predicted that its image lies in the additive subgroup of ℝ generated by the inverses of all the orders of the finite subgroups of G, and has been disproved by Roy [15].

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom