The relation between the Baum-Connes Conjecture and the Trace Conjecture
Author(s) -
Wolfgang Lück
Publication year - 2002
Publication title -
inventiones mathematicae
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.536
H-Index - 125
eISSN - 1432-1297
pISSN - 0020-9910
DOI - 10.1007/s002220200215
Subject(s) - mathematics , conjecture , trace (psycholinguistics) , equivariant map , isomorphism (crystallography) , combinatorics , center (category theory) , pure mathematics , homology (biology) , cyclic homology , discrete mathematics , philosophy , linguistics , crystal structure , chemistry , biochemistry , cohomology , gene , crystallography
. We prove a version of the L 2-index Theorem of Atiyah, which uses the universal center-valued trace instead of the standard trace. We construct for G-equivariant K-homology an equivariant Chern character, which is an isomorphism and lives over the ring ℤ⊂λ G ⊂ℚ obtained from the integers by inverting the orders of all finite subgroups of G. We use these two results to show that the Baum-Connes Conjecture implies the modified Trace Conjecture, which says that the image of the standard trace K 0(C * r (G))→ℝ takes values in λ G . The original Trace Conjecture predicted that its image lies in the additive subgroup of ℝ generated by the inverses of all the orders of the finite subgroups of G, and has been disproved by Roy [15].
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom