Quantum Chaos and Dynamical Entropy
Author(s) -
Fabio Benatti,
Thomas Hudetz,
Andreas Knauf
Publication year - 1998
Publication title -
communications in mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.662
H-Index - 152
eISSN - 1432-0916
pISSN - 0010-3616
DOI - 10.1007/s002200050489
Subject(s) - quantum chaos , physics , classical mechanics , quantum , statistical physics , entropy (arrow of time) , quantum discord , quantum dissipation , quantum mechanics , quantum dynamics
We review the notion of dynamical entropy by Connes, Narnhofer and Thirring and relate it to Quantum Chaos. A particle in a periodic potential is used as an example. This is worked out in the classical and the quantum mechanical framework, for the single particle as well as for the corresponding gas.The comparison does not only support the general assertion that quantum mechanics is qualitatively less chaotic than classical mechanics. More specifically, the same dynamical mechanism by which a periodic potential leads to a positive dynamical entropy of the classical particle may reduce the dynamical entropy of the quantum gas in comparison to free motion.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom