On the Yamabe problem and the scalar curvature problems under boundary conditions
Author(s) -
Antonio Ambrosetti,
Yanyan Li,
Andrea Malchiodi
Publication year - 2002
Publication title -
mathematische annalen
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.235
H-Index - 75
eISSN - 1432-1807
pISSN - 0025-5831
DOI - 10.1007/s002080100267
Subject(s) - mathematics , yamabe flow , scalar curvature , mathematical analysis , curvature , prescribed scalar curvature problem , sectional curvature , geometry
In this paper we prove some existence results concerning a problem arising in conformal differential geometry. Consider a smooth metric g onB = {x ∈ R : |x| < 1}, the unit ball onR, n ≥ 3, and let∆g, Rg, νg, hg denote, respectively, the Laplace-Beltrami operator, the scalar curvature of (B, g), the outward unit normal to∂B = Sn−1 with respect tog and the mean curvature of (Sn−1, g). Given two smooth functions R′ andh′, we will be concerned with the existence of positive solutionsu ∈ H 1(B) of −4(n− 1) (n− 2)∆gu+ Rgu = R ′u n+2 n−2 , in B;
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom