z-logo
open-access-imgOpen Access
Navier-Stokes equations on Lipschitz domains in Riemannian manifolds
Author(s) -
Marius Mitrea,
Michael E. Taylor
Publication year - 2001
Publication title -
mathematische annalen
Language(s) - English
Resource type - Journals
eISSN - 1432-1807
pISSN - 0025-5831
DOI - 10.1007/s002080100261
Subject(s) - mathematics , lipschitz domain , lipschitz continuity , bounded function , mathematical analysis , euclidean space , boundary (topology) , navier–stokes equations , flow (mathematics) , domain (mathematical analysis) , compressibility , geometry , engineering , aerospace engineering
The Navier-Stokes equations are a system of nonlinear evolution equations modeling the flow of a viscous, incompressible fluid. One ingredient in the analysis of this system is the stationary, linear system known as the Stokes system, a boundary value problem (BVP) that will be described in detail in the next section. Layer potential methods in smoothly bounded domains in Euclidean space have proven useful in the analysis of the Stokes system, starting with work of Odqvist and Lichtenstein, and including work of Solonnikov and many others. See the discussion in Chapter III of [10] and in [17], for the case of flow in regions with smooth boundary. A treatment based on the modern language of pseudodifferential operators can be found in [18]. In 1988, E. Fabes, C. Kenig and G. Verchota [6], extended this classical layer potential approach to cover Lipschitz domains in Euclidean space. In [6] the main result concerning the (constant coefficient) Stokes system on Lipschitz domains with connected boundary in Euclidean space, is the treatment of the L-Dirichlet boundary value problem (and its regular version). To achieve this, the authors solve certain auxiliary Neumann type problems and then exploit the duality between these and the original BVP’s at the level of boundary integral operators. P. Deuring and W. von Wahl [4] made use of the analysis in [6] to demonstrate the short-time existence of solutions to the Navier-Stokes equations in bounded Lipschitz domains in threedimensional Euclidean space. It was necessary in [4] to include the hypothesis that the boundary be connected. The hypothesis that the boundary be connected pervaded much work on the application of layer potentials to analysis on Lipschitz domains. It was certainly natural to speculate that this restriction was an artifact of the methods used and not ∗Partly supported by NSF grant DMS-9870018. †Partially supported by NSF grant DMS-9877077. 1991Mathematics Subject Classification. Primary 35Q30, 76D05, 35J25; Secondary 42B20, 45E05.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom