z-logo
open-access-imgOpen Access
Two distinct pathways for anaerobic degradation of aromatic compounds in the denitrifying bacterium Thauera aromatica strain AR-1
Author(s) -
Bodo Philipp,
Bernhard Schink
Publication year - 1999
Publication title -
archives of microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.648
H-Index - 102
eISSN - 1432-072X
pISSN - 0302-8933
DOI - 10.1007/s002039900112
Subject(s) - denitrifying bacteria , biology , biochemistry , microbial biodegradation , bacteria , microbiology and biotechnology , chemistry , microorganism , denitrification , organic chemistry , nitrogen , genetics
Denitrifying bacteria degrade many different aromatic compounds anaerobically via the well-described benzoyl-CoA pathway. We have shown recently that the denitrifiers Azoarcus anaerobius and Thauera aromatica strain AR-1 use a different pathway for anaerobic degradation of resorcinol (1,3-dihydroxybenzene) and 3,5-dihydroxybenzoate, respectively. Both substrates are converted to hydroxyhydroquinone (1,2,4-trihydroxybenzene). In the membrane fraction of T. aromatica strain AR-1 cells grown with 3,5-dihydroxybenzoate, a hydroxyhydroquinone-dehydrogenating activity of 74 nmol min(-1)(mg protein)-1 was found. This activity was significantly lower in benzoate-grown cells. Benzoate-grown cells were not induced for degradation of 3,5-dihydroxybenzoate, and cells grown with 3,5-dihydroxybenzoate degraded benzoate only at a very low rate. With a substrate mixture of benzoate plus 3,5-dihydroxybenzoate, the cells showed diauxic growth. Benzoate was degraded first, while complete degradation of 3,5-dihydroxybenzoate occurred only after a long lag phase. The 3,5-dihydroxybenzoate-oxidizing and the hydroxyhydroquinone-dehydrogenating activities were fully induced only during 3,5-dihydroxybenzoate degradation. Synthesis of benzoyl-CoA reductase appeared to be significantly lower in 3,5-dihydroxybenzoate-grown cells as shown by immunoblotting. These results confirm that T. aromatica strain AR-1 harbors, in addition to the benzoyl-CoA pathway, a second, mechanistically distinct pathway for anaerobic degradation of aromatic compounds. This pathway is inducible and subject to catabolite repression by benzoate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom