
Restriction in hip internal rotation is associated with an increased risk of ACL injury
Author(s) -
Bedi Asheesh,
Warren Russell F.,
Wojtys Edward M.,
Oh You Keun,
AshtonMiller James A.,
Oltean Hanna,
Kelly Bryan T.
Publication year - 2016
Publication title -
knee surgery, sports traumatology, arthroscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.806
H-Index - 125
eISSN - 1433-7347
pISSN - 0942-2056
DOI - 10.1007/s00167-014-3299-4
Subject(s) - femoroacetabular impingement , acl injury , anterior cruciate ligament , medicine , odds ratio , athletes , range of motion , surgery , physical therapy
Purpose Evidence suggests that femoroacetabular impingement (FAI) in athletes may increase the risk of anterior cruciate ligament (ACL) injury. This study correlates ACL injury with hip range of motion in a consecutive series of elite, contact athletes and tests the hypothesis that a restriction in the available hip axial rotation in a dynamic in silico model of a simulated pivot landing would increase ACL strain and the risk of ACL rupture. Methods Three hundred and twenty‐four football athletes attending the 2012 NFL National Invitational Camp were examined. Hip range of internal rotation was measured and correlated with a history of ACL injury and surgical repair. An in silico biomechanical model was used to study the effect of FAI on the peak relative ACL strain developed during a simulated pivot landing. Results The in vivo results demonstrated that a reduction in internal rotation of the left hip was associated with a statistically significant increased odds of ACL injury in the ipsilateral or contralateral knee (OR 0.95, p = 0.0001 and p < 0.0001, respectively). A post‐estimation calculation of odds ratio for ACL injury based on deficiency in hip internal rotation demonstrated that a 30‐degree reduction in left hip internal rotation was associated with 4.06 and 5.29 times greater odds of ACL injury in the ipsilateral and contralateral limbs, respectively. The in silico model demonstrated that FAI systematically increased the peak ACL strain predicted during the pivot landing. Conclusion FAI may be associated with ACL injury because of the increased resistance to femoral internal axial rotation during a dynamic maneuver such as a pivot landing. This insight may lead to better interventions to prevent ACL injury and improved understanding of ACL reconstruction failure. Level of evidence Cohort study, Level IV.