z-logo
open-access-imgOpen Access
Quasihyperbolic boundary conditions and capacity: Hölder continuity of quasiconformal mappings
Author(s) -
Pekka Koskela,
Jani Onninen,
Jeremy T. Tyson
Publication year - 2001
Publication title -
commentarii mathematici helvetici
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.603
H-Index - 46
eISSN - 1420-8946
pISSN - 0010-2571
DOI - 10.1007/pl00013214
Subject(s) - mathematics , hölder condition , quasiconformal mapping , boundary (topology) , mathematical analysis , pure mathematics
.   We prove that quasiconformal maps onto domains which satisfy a quasihyperbolic boundary condition are globally Hölder continuous in the internal metric. The primary improvement here over existing results along these lines is that no assumptions are made on the source domain. We reduce the problem to the verification of a capacity estimate in domains satisfing a quasihyperbolic boundary condition, which we establish using a combination of a chaining argument involving the Poincaré inequality on Whitney cubes together with Frostman's theorem. We also discuss related results where the quasihyperbolic boundary condition is slightly weakened; in this case the Hölder continuity of quasiconformal maps is replaced by uniform continuity with a modulus of continuity which we calculate explicitly.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom