Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs
Author(s) -
Victor V. Batyrev
Publication year - 1999
Publication title -
journal of the european mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.549
H-Index - 64
eISSN - 1435-9863
pISSN - 1435-9855
DOI - 10.1007/pl00011158
Subject(s) - mathematics , terminal (telecommunication) , euler's formula , pure mathematics , euler number (physics) , combinatorics , mathematical analysis , semi implicit euler method , backward euler method , euler equations , telecommunications , computer science
Using non-Archimedian integration over spaces of arcs of algebraic varieties,we define stringy Euler numbers associated with arbitrary Kawamata log terminalpairs. There is a natural Kawamata log terminal pair corresponding to analgebraic variety V having a regular action of a finite group G. In thissituation we show that the stringy Euler number of this pair coincides with thephysicists' orbifold Euler number defined by the Dixon-Harvey-Vafa-Wittenformula. As an application, we prove a conjecture of Miles Reid on the Eulernumbers of crepant desingularizations of Gorenstein quotient singularities.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom