An improved error bound for a finite element approximation of a model for phase separation of a multi-component alloy with a concentration dependent mobility matrix
Author(s) -
John W. Barrett,
James F. Blowey
Publication year - 2001
Publication title -
numerische mathematik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.214
H-Index - 90
eISSN - 0945-3245
pISSN - 0029-599X
DOI - 10.1007/pl00005445
Subject(s) - discretization , mathematics , finite element method , backward euler method , logarithm , matrix (chemical analysis) , piecewise , component (thermodynamics) , limit (mathematics) , piecewise linear function , approximation error , numerical analysis , euler method , mathematical analysis , euler's formula , thermodynamics , physics , materials science , composite material
this paper we consider only the case of a non-degenerate mobilitymatrix L; that is, L min (i) in (1.3b) satisfies the assumption in (D) above. Elliottand Garcke (1997) have proved existence of a solution to (P ` ) and its deep quenchlimit (P) for the physically interesting case of mobility matrices L which degeneratein the pure phases; that is, L min (i) in (1.3b) satisfies L min (i) ? 0 for all i lying inthe interior of the Gibbs simplex Q
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom