Semi-stability and base change
Author(s) -
Urs Hartl
Publication year - 2001
Publication title -
archiv der mathematik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 43
eISSN - 1420-8938
pISSN - 0003-889X
DOI - 10.1007/pl00000484
Subject(s) - mathematics , discrete valuation , base change , valuation (finance) , discrete valuation ring , valuation ring , base (topology) , extension (predicate logic) , stability (learning theory) , pure mathematics , discrete mathematics , combinatorics , mathematical analysis , field (mathematics) , business , finance , computer science , programming language , machine learning
Let X and Y be regular strictly semi-stable varieties over a discrete valuation ring R and let $ R \subseteqq {\widetilde {R}} $ be a finite ramified extension of discrete valuation rings. We explicitly give desingularization procedures for the base change $ X \times _R {\widetilde {R}} $ and for the product $ X \times _R Y $.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom