Tilings and finite energy retractions of locally symmetric spaces
Author(s) -
Leslie Saper
Publication year - 1997
Publication title -
commentarii mathematici helvetici
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.603
H-Index - 46
eISSN - 1420-8946
pISSN - 0010-2571
DOI - 10.1007/pl00000369
Subject(s) - backslash , mathematics , diffeomorphism , quotient , combinatorics , mathematical analysis , pure mathematics
Let $ \Gamma \backslash \overline{X} $ be the Borel-Serre compactifiction of an arithmetic quotient $ \Gamma \backslash X $ of a symmetric space of noncompact type. We construct natural tilings $ \Gamma \backslash \overline{X} = \coprod _P \Gamma \backslash \overline{X}_P $ (depending on a parameter b) which generalize the Arthur-Langlands partition of $ \Gamma \backslash X $. This is applied to yield a natural piecewise analytic deformation retraction of $ \Gamma \backslash \overline{X} $ onto a compact submanifold with corners $ \Gamma \backslash X _0 \subset \Gamma \backslash X $. In fact, we prove that $ \Gamma \backslash X _0 $ is a realization (under a natural piecewise analytic diffeomorphism) of $ \Gamma \backslash \overline{X} $ inside the interior $ \Gamma \backslash X $. For application to the theory of harmonic maps and geometric rigidity, we prove this retraction and diffeomorphism have finite energy except for a few low ranks examples. We also use tilings to give an explicit description of a cofinal family of neighborhoods of a face of $ \Gamma \backslash \overline{X} $, and study the dependance of tilings on the parameter b and the degeneration of tilings.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom