z-logo
open-access-imgOpen Access
Learning stochastic finite automata from experts
Author(s) -
Colin de la Higuera
Publication year - 1998
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-64776-7
DOI - 10.1007/bfb0054066
Subject(s) - computer science , automaton , learning automata , deterministic automaton , class (philosophy) , theoretical computer science , deterministic finite automaton , finite state machine , variety (cybernetics) , construct (python library) , artificial intelligence , machine learning , algorithm , programming language
We present in this paper a new learning problem called learning distributions from experts. In the case we study the experts are stochastic deterministic finite automata (sdfa). We deal with the situation arising when wanting to learn sdfa from unrepeated examples. This is intended to model the situation where the data is not generated automatically, but in an order dependent of its probability, as would be the case with the data presented by a human expert. It is then impossible to use frequency measures directly in order to construct the underlying automaton or to adjust its probabilities. In this paper we prove that although a polynomial identification with probability one is not always possible, a wide class of automata can successfully, and for this criterion, be identified. As the framework is new the problem leads to a variety of open problems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom