z-logo
open-access-imgOpen Access
A programming language for the inductive sets, and applications
Author(s) -
David Harel,
Dexter Kozen
Publication year - 1982
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
DOI - 10.1007/bfb0012779
Subject(s) - computer science , inductive logic programming , programming language , logic programming , datalog , turing , turing machine , first order logic , set (abstract data type) , theoretical computer science , computation
We introduce a programming language IND that generalizes alternating Turing machines to arbitrary first-order structures. We show that IND programs (respectively, everywhere-halting IND programs, loop-free IND programs) accept precisely the inductively definable (respectively, hyperelementary, elementary) relations. We give several examples showing how the language provides a robust and computational approach to the theory of first-order inductive definability. We then show: (1) on all acceptable structures (in the sense of Moschovakis [Mo]), r.e. Dynamic Logic is more expressive than finite-test Dynamic Logic. This refines a separation result of Meyer and Parikh [MP]; (2) IND provides a natural query language for the set of fixpoint queries over a relational database, answering a question of Chandra and Harel [CH2].

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom