z-logo
open-access-imgOpen Access
A Comprehensive Orbit Reconstruction for the Galileo Prime Mission in the J2000 System
Author(s) -
Robert A. Jacobson,
R. J. Haw,
T. P. McElrath,
Peter G. Antreasian
Publication year - 2000
Publication title -
the journal of the astronautical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.698
H-Index - 46
eISSN - 2195-0571
pISSN - 0021-9142
DOI - 10.1007/bf03546268
Subject(s) - jovian , galilean moons , jupiter (rocket family) , ephemeris , galileo (satellite navigation) , astronomy , spacecraft , physics , orbit (dynamics) , satellite , astrobiology , geodesy , natural satellite , geology , aerospace engineering , planet , saturn , engineering
The Galileo spacecraft arrived at Jupiter in December of 1995 to begin an orbital tour of the Jovian system. The objective of the tour was up close study of the planet, its satellites, and its magnetosphere. The spacecraft completed its 11 orbit prime mission in November of 1997 having had 16 successful close encounters with the Galilean satellites (including two prior to Jupiter orbit insertion). Galileo continues to operate and will have made an additional 10 orbits of Jupiter by the date of this Conference. Earlier papers discuss the determination of the spacecraft orbit in support of mission operations from arrival at Jupiter through the first 9 orbits. In this paper we re-examine those earlier orbits and extend the analysis through orbit 12, the first orbit of the Galileo Europa Mission (GEM). The objective of our work is the reconstruction of the spacecraft trajectory together with the development of a consistent set of ephemerides for the Galilean satellites. As a necessary byproduct of the reconstruction we determine improved values for the Jovian system gravitational parameters and for the Jupiter pole orientation angles. Our preliminary analyses have already led to many of the results reported in the scientific literature. Unlike the Galileo Navigation Team which operates in the EME-1950 coordinate system, we elected to work in the (J2000) International Celestial Reference Frame (ICRF), the reference frame of the current JPL planetary and satellite ephemerides as well as the standard frame of the international astronomical and planetary science community. Use of this frame permits more precise modelling of the spacecraft and satellite observations. Moreover, it is the frame of choice for all other operational JPL missions and will probably be the frame for future missions for some time. Consequently, our adoption of the ICRF will facilitate the combination of our results with any obtained from future missions (e.g. the proposed Europa Orbiter mission). In addition, our results may be used by the science community, without need of a reference frame conversion.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom