z-logo
open-access-imgOpen Access
Effect of copper-sulphur bond on the DNA photo-cleavage activity of 2-(methylthio)ethylpyridine-2-carbaldimine copper(II) complexes
Author(s) -
Tarkeshwar Gupta,
Ashis K. Patra,
Shanta Dhar,
Munirathinam Nethaji,
Akhil R. Chakravarty
Publication year - 2005
Publication title -
journal of chemical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.32
H-Index - 52
eISSN - 0973-7103
pISSN - 0253-4134
DOI - 10.1007/bf03356106
Subject(s) - chemistry , copper , crystallography , quinoxaline , bond length , covalent bond , bond cleavage , ternary operation , imine , schiff base , stereochemistry , crystal structure , organic chemistry , computer science , programming language , catalysis
The binding and photo-induced DNA cleavage activity of a binary complex [CuL2](ClO4)2 (1) and the in situ generated ternary complexes [CuLB](ClO4)2 from 1 (B: 1,10-phenanthroline, phen, 2; dipyrido[3,2-d: 2′,3′-f]quinoxaline, dpq, 3) are studied, where L is a N2S-donor tridentate Schiff base 2- (methylthio)ethylpyridine-2-carbaldimine. Complex 1, structurally characterized by X-ray diffraction study, has six-coordinate meridional geometry showing CuN4S2 coordination. The Cu-N bond lengths are in the range of 1·968(3) to 2·158(4) Å. The Cu-S bond lengths of 2·599(2) and 2·705(2) Å are significantly long indicating weak covalent interaction between copper and sulphur atoms. The thiomethyl groups are cis to each other giving S-Cu-S angle of 75·82(5)°. The Cu-N(pyridyl) bond distances are longer than the Cu-N(imine) bonds. The complexes are redox active and display a quasi-reversible cyclic voltammetric response assignable to the Cu(II)/Cu(I) couple near 0·0 V vs SCE in DMF-Tris buffer (1: 4 v/v) using 0·1 M KCl as supporting electrolyte. Electronic spectra of the complexes show a d-d band in the range 630 to 700 nm in DMF along with higher energy charge transfer bands. While complex 1 is a poor binder to DNA, the ternary complexes show good DNA binding propensity. The photo-nuclease activity of 1–3 is studied using UV and visible wavelengths. The DNA cleavage activity at 365 nm follows the order: 3 > 2 > 1. The cleavage reaction involves the formation of singlet oxygen as the reactive species in a type-II process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom