The μ → e + γ decay and the intermediate charged vector boson theory
Author(s) -
Ph. Meyer,
George Salzman
Publication year - 1959
Publication title -
il nuovo cimento
Language(s) - English
Resource type - Journals
eISSN - 1827-6121
pISSN - 0029-6341
DOI - 10.1007/bf02962352
Subject(s) - physics , vector boson , boson , particle physics , elementary particle , vertex (graph theory) , photon , nuclear physics , quantum mechanics , combinatorics , graph , mathematics
SummaryThe μ-e-γ vertex is calculated in the intermediate charged vector boson theory, as a function of the square of the four momentum of the photon. Consistency arguments show that the boson anomalous magnetic moment should be taken equal to zero. The result is then specialized to a real photon. The experimental branching ratio% MathType!MTEF!2!1!+-% feaafiart1ev1aaatuuDJXwAK1uy0Hwmaerbfv3ySLgzG0uy0Hgip5% wzamXvP5wqonvsaeHbfv3ySLgzaeXatLxBI9gBamXvP5wqSXMqHnxA% Jn0BKvguHDwzZbqehqvATv2CG4uz3bIuV1wyUbqehm0B1jxALjhiov% 2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qq% aqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8% qqQ8frFve9Fve9Ff0dmeaaciGacmaadaWabiqaeaqbaqaagaaakeaa% ieaacqWFXpq8cqGH9aqpiiaacqGFOaakcqaH8oqBcqGHsgIRcqGFLb% qziqGacaqFRaGaeq4SdCMae4xkaKIae43la8Iae4hkaGIaeqiVd0Ma% eyOKH4Qae4xzauMae43kaSIaa0NDaiaa9TcaceqF2bGbaebaiqaaca% aFPaGaaWxpaiaa8fdacaaFUaGaaWNmaiabgglaXkaa8fdacaaFUaGa% aWxnaaaa!6256!$$\varrho = (\mu \to e + \gamma )/(\mu \to e + v + \bar v) = 1.2 \pm 1.5$$ fixes the cut-off value at less than one fifth the intermediate boson mass. It is concluded that this theory does not reasonably account for the experimental data, no matter how massive the boson is assumed to be.RiassuntoNella teoria del bosone vettoriale di carica intermedia, si calcola il vertice μ-e-γ come funzione del quadrato del tetraimpulso del fotone. Coerenti argomentazioni dimostrano che il momento magnetico anomalo del bosone dovrebbe essere assunto uguale a zero. Tale risultato è particolarizzato al caso di un fotone reale. Il rapporto sperimentale di « branching »% MathType!MTEF!2!1!+-% feaafiart1ev1aaatuuDJXwAK1uy0Hwmaerbfv3ySLgzG0uy0Hgip5% wzamXvP5wqonvsaeHbfv3ySLgzaeXatLxBI9gBamXvP5wqSXMqHnxA% Jn0BKvguHDwzZbqehqvATv2CG4uz3bIuV1wyUbqehm0B1jxALjhiov% 2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qq% aqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8% qqQ8frFve9Fve9Ff0dmeaaciGacmaadaWabiqaeaqbaqaagaaakeaa% ieaacqWFXpq8cqGH9aqpiiaacqGFOaakcqaH8oqBcqGHsgIRcqGFLb% qziqGacaqFRaGaeq4SdCMae4xkaKIae43la8Iae4hkaGIaeqiVd0Ma% eyOKH4Qae4xzauMae43kaSIaa0NDaiaa9TcaceqF2bGbaebaiqaaca% aFPaGaaWxpaiaa8fdacaaFUaGaaWNmaiabgglaXkaa8fdacaaFUaGa% aWxnaaaa!6256!$$\varrho = (\mu \to e + \gamma )/(\mu \to e + v + \bar v) = 1.2 \pm 1.5$$ fissa il valore del taglio a meno di un quinto della massa del bosone intermedio. Si conclude che questa teoria non tiene conto in modo ragionevole dei dati sperimentali, comunque compatto si consideri il bosone.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom