z-logo
open-access-imgOpen Access
Compositions with the euler and carmichael functions
Author(s) -
William D. Banks,
Florian Luca,
Filip Saidak,
Pantelimon Sta ̆ Nica
Publication year - 2005
Publication title -
abhandlungen aus dem mathematischen seminar der universität hamburg
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.354
H-Index - 20
eISSN - 1865-8784
pISSN - 0025-5858
DOI - 10.1007/bf02942044
Subject(s) - euler's formula , order (exchange) , euler number (physics) , euler's totient function , mathematics , function (biology) , combinatorics , arithmetic , discrete mathematics , backward euler method , semi implicit euler method , euler equations , mathematical analysis , biology , business , finance , evolutionary biology
Let ϕ and λ be the Euler and Carmichael functions, respectively. In this paper, we establish lower and upper bounds for the number of positive integers n ≤ x such that ϕ(λ(n)) = λ(ϕ(n)). We also study the normal order of the function ϕ(λ(n))/λ(ϕ(n)).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom