Compositions with the euler and carmichael functions
Author(s) -
William D. Banks,
Florian Luca,
Filip Saidak,
Pantelimon Sta ̆ Nica
Publication year - 2005
Publication title -
abhandlungen aus dem mathematischen seminar der universität hamburg
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.354
H-Index - 20
eISSN - 1865-8784
pISSN - 0025-5858
DOI - 10.1007/bf02942044
Subject(s) - euler's formula , order (exchange) , euler number (physics) , euler's totient function , mathematics , function (biology) , combinatorics , arithmetic , discrete mathematics , backward euler method , semi implicit euler method , euler equations , mathematical analysis , biology , business , finance , evolutionary biology
Let ϕ and λ be the Euler and Carmichael functions, respectively. In this paper, we establish lower and upper bounds for the number of positive integers n ≤ x such that ϕ(λ(n)) = λ(ϕ(n)). We also study the normal order of the function ϕ(λ(n))/λ(ϕ(n)).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom