z-logo
open-access-imgOpen Access
An optimalL p -bound on the Krein spectral shift function
Author(s) -
Dirk Hundertmark,
Barry Simon
Publication year - 2002
Publication title -
journal d analyse mathématique
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.189
H-Index - 53
eISSN - 1565-8538
pISSN - 0021-7670
DOI - 10.1007/bf02868474
Subject(s) - lambda , combinatorics , trace (psycholinguistics) , function (biology) , upper and lower bounds , mathematics , regular polygon , convex function , physics , mathematical analysis , geometry , quantum mechanics , philosophy , linguistics , evolutionary biology , biology
Let ξA,B be the Krein spectral shift function for a pair of operatorsA, B, with C =A-B trace class. We establish the bound% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfKttLearuqr1ngBPrgarmqr1ngBPrgitL% xBI9gBamXvP5wqSXMqHnxAJn0BKvguHDwzZbqegm0B1jxALjhiov2D% aeHbuLwBLnhiov2DGi1BTfMBaebbfv3ySLgzGueE0jxyaibaiiYdf9% irVeeu0dXdh9vqqj-hEeeu0xXdbba9frFj0-OqFfea0dXdd9vqaq-J% frVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr0-vqpWqaaeaabi% GaciaacaqabeaadaabauaaaOqaamaapeaabaGaemOrayKaeiikaGIa% eiiFaWNaeqOVdG3aaSbaaSqaaiabdgeabjabcYcaSiabdkeacbqaba% GccqGGOaakcqaH7oaBcqGGPaqkcqGG8baFcqGGPaqkaSqabeqaniab% gUIiYdqegeKCPfgBaGGbcOGaa8hiaiabdsgaKjabeU7aSjabgsMiJo% aapeaabaGaemOrayKaeiikaGIaeiiFaWNaeqOVdG3aaSbaaSqaaiab% cYha8jabdoeadjabcYha8jabcYcaSiabicdaWaqabaGccqGGOaakcq% aH7oaBcqGGPaqkcqGG8baFcqGGPaqkaSqabeqaniabgUIiYdGccaWF% GaGaemizaqMaeq4UdWMaeyypa0ZaaabCaeaacqGGBbWwcqWGgbGrcq% GGOaakcqWGQbGAcqGGPaqkcqGHsislcqWGgbGrcqGGOaakcqWGQbGA% cqGHsislcqaIXaqmcqGGPaqkcqGGDbqxcqaH8oqBdaWgaaWcbaGaem% OAaOgabeaakiabcIcaOiabdoeadjabcMcaPiabcYcaSaWcbaGaemOA% aOMaeyypa0JaeGymaedabaGaeyOhIukaniabggHiLdaaaa!899B!$$\int {F(|\xi _{A,B} (\lambda )|)} d\lambda \leqslant \int {F(|\xi _{|C|,0} (\lambda )|)} d\lambda = \sum\limits_{j = 1}^\infty {[F(j) - F(j - 1)]\mu _j (C),} $$ whereF is any non-negative convex function on [0, ∞) with F(0) = 0 and Ώj (C) are the singular values ofC. The choice F(t) =tp,p ≥ 1, improves a recent bound of Combes, Hislop and Nakamura.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom