Dynamical Borel-Cantelli lemmas for gibbs measures
Author(s) -
N. Chernov,
Dmitry Kleinbock
Publication year - 2001
Publication title -
israel journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.168
H-Index - 63
eISSN - 1565-8511
pISSN - 0021-2172
DOI - 10.1007/bf02809888
Subject(s) - mathematics , lemma (botany) , markov chain , dynamical systems theory , probability measure , discrete mathematics , dynamical system (definition) , measure (data warehouse) , pure mathematics , combinatorics , statistics , computer science , ecology , physics , poaceae , quantum mechanics , database , biology
LetT: X→X be a deterministic dynamical system preserving a probability measure μ. A dynamical Borel-Cantelli lemma asserts that for certain sequences of subsetsA n ⊃ X and μ-almost every pointx∈X the inclusionT n x∈A n holds for infinitely manyn. We discuss here systems which are either symbolic (topological) Markov chain or Anosov diffeomorphisms preserving Gibbs measures. We find sufficient conditions on sequences of cylinders and rectangles, respectively, that ensure the dynamical Borel-Cantelli lemma.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom