On conformal capacity and Teichmüller’s modulus problem in space
Author(s) -
Dimitrios Betsakos
Publication year - 1999
Publication title -
journal d analyse mathématique
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.189
H-Index - 53
eISSN - 1565-8538
pISSN - 0021-7670
DOI - 10.1007/bf02788241
Subject(s) - conformal map , dimension (graph theory) , extremal length , condenser (optics) , mathematics , space (punctuation) , ring (chemistry) , combinatorics , pure mathematics , mathematical analysis , conformal symmetry , physics , computer science , chemistry , light source , organic chemistry , optics , operating system
We solve an extremal problem for the conformal capacity of certain space condensers. The extremal condenser is conformally equivalent to Teichmüller’s ring. As an application, we give a dimension-free estimate for the minimal conformal capacity of the condensers with platesE, F such thata, b ∈ E,c, d ∈ F, wherea, b, c, d are given points in$$\overline R ^n $$.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom