z-logo
open-access-imgOpen Access
Low distortion euclidean embeddings of trees
Author(s) -
Nathan Linial,
Avner Magen,
Michael Saks
Publication year - 1998
Publication title -
israel journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.168
H-Index - 63
eISSN - 1565-8511
pISSN - 0021-2172
DOI - 10.1007/bf02773475
Subject(s) - mathematics , distortion (music) , euclidean geometry , algebra over a field , combinatorics , pure mathematics , discrete mathematics , geometry , computer science , computer network , amplifier , bandwidth (computing)
We consider the problem of embedding a certain finite metric space to the Euclidean space, trying to keep the bi-Lipschitz constant as small as possible. We introduce the notationc 2(X, d) for the least distortion with which the metric space (X, d) may be embedded in a Euclidean space. It is known that if (X, d) is a metric space withn points, thenc 2(X, d)≤0(logn) and the bound is tight. LetT be a tree withn vertices, andd be the metric induced by it. We show thatc 2(T, d)≤0(log logn), that is we provide an embeddingf of its vertices to the Euclidean space, such thatd(x, y)≤‖f(x)−f(y) ‖≤c log lognd(x, y) for some constantc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom