Smooth prime integrals for quasi-integrable Hamiltonian systems
Author(s) -
Luigi Chierchia,
Giovanni Gallavotti
Publication year - 1982
Publication title -
il nuovo cimento della società italiana di fisica. b/il nuovo cimento b
Language(s) - English
Resource type - Journals
eISSN - 1826-9877
pISSN - 1594-9982
DOI - 10.1007/bf02721167
Subject(s) - integrable system , hamiltonian system , perturbation (astronomy) , phase space , mathematics , lebesgue measure , hamiltonian (control theory) , lebesgue integration , mathematical physics , mathematical analysis , pure mathematics , physics , quantum mechanics , mathematical optimization
A Hamiltonian with N degrees of freedom, analytic perturbation of acanonically integrable strictly nonisochronous analytic Hamiltonian, isconsidered. We show the existence of N functions on phase space and ofclass C^∞ which are prime integrals for the perturbed motions on a suitableregion whose Lebesgue measure tends to fill locally the phase space as theperturbation’s magnitude approaches zero. An application to theperturbations of isochronous nonresonant linear oscillators is given
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom