A study on fatigue crack growth in dual phase martensitic steel in air environment
Author(s) -
K. V. Sudhakar,
E. S. Dwarakadasa
Publication year - 2000
Publication title -
bulletin of materials science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.35
H-Index - 72
eISSN - 0973-7669
pISSN - 0250-4707
DOI - 10.1007/bf02719909
Subject(s) - materials science , martensite , paris' law , crack closure , fracture toughness , stress intensity factor , composite material , dual phase steel , microstructure , fracture mechanics , fractography , crack growth resistance curve , transgranular fracture , metallurgy , intergranular fracture , grain boundary
Dual phase (DP) steel was intercritically annealed at different temperatures from fully martensitic state to achieve martensite plus ferrite, microstructures with martensite contents in the range of 32 to 76%. Fatigue crack growth (FCG) and fracture toughness tests were carried out as per ASTM standards E 647 and E 399, respectively to evaluate the potential of DP steels. The crack growth rates (da/dN) at different stress intensity ranges (ΔK) were determined to obtain the threshold value of stress intensity range (ΔKth). Crack path morphology was studied to determine the influence of microstructure on crack growth characteristics. After the examination of crack tortuosity, the compact tension (CT) specimens were pulled in static mode to determine fracture toughness values. FCG rates decreased and threshold values increased with increase in vol.% martensite in the DP steel. This is attributed to the lower carbon content in the martensite formed at higher intercritical annealing (ICA) temperatures, causing retardation of crack growth rate by crack tip blunting and/or deflection. Roughness induced crack closure was also found to contribute to the improved crack growth resistance at higher levels of martensite content. Scanning electron fractography of DP steel in the near threshold region revealed transgranular cleavage fracture with secondary cracking. Results indicate the possibility that the DP steels may be treated to obtain an excellent combination of strength and fatigue properties.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom