z-logo
open-access-imgOpen Access
Estimation of failure probabilities of linear dynamic systems by importance sampling
Author(s) -
Anna Olsen,
Arvid Næss
Publication year - 2006
Publication title -
sadhana
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.268
H-Index - 49
eISSN - 0973-7677
pISSN - 0256-2499
DOI - 10.1007/bf02716785
Subject(s) - girsanov theorem , mathematics , weighting , mathematical optimization , monte carlo method , importance sampling , algorithm , computer science , control theory (sociology) , statistics , medicine , control (management) , stochastic differential equation , artificial intelligence , radiology
An iterative method for estimating the failure probability for certain time-variant reliability problems has been developed. In the paper, the focus is on the displacement response of a linear oscillator driven by white noise. Failure is then assumed to occur when the displacement response exceeds a critical threshold. The iteration procedure is a two-step method. On the first iteration, a simple control function promoting failure is constructed using the design point weighting principle. After time discretization, two points are chosen to construct a compound deterministic control function. It is based on the time point when the first maximum of the homogenous solution has occurred and on the point at the end of the considered time interval. An importance sampling technique is used in order to estimate the failure probability functional on a set of initial values of state space variables and time. On the second iteration, the concept of optimal control function can be implemented to construct a Markov control which allows much better accuracy in the failure probability estimate than the simple control function. On both iterations, the concept of changing the probability measure by the Girsanov transformation is utilized. As a result the CPU time is substantially reduced compared with the crude Monte Carlo procedure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom