Kinetics of cellobiose decomposition under subcritical and supercritical water in continuous flow system
Author(s) -
Jung Hoon Park,
Sang Do Park
Publication year - 2002
Publication title -
korean journal of chemical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.609
H-Index - 60
eISSN - 1975-7220
pISSN - 0256-1115
DOI - 10.1007/bf02707218
Subject(s) - cellobiose , chemistry , supercritical fluid , yield (engineering) , decomposition , hydrolysis , kinetics , furfural , pyrolysis , catalysis , organic chemistry , materials science , physics , quantum mechanics , metallurgy , cellulase
The effects of reaction temperature, pressure and residence time were investigated with a flow apparatus. Cellobiose decomposition kinetics and products in suband supercritical water were examined at temperatures from 320 to 420 °C at pressures from 25 to 40 MPa, and at residence times within 3 sec. Cellobiose was found to decompose via hydrolysis and pyrolysis. The yield of desired hydrolysis product, glucose, was the maximum value of 36.8% at 320 °C, 35 MPa, but the amount of 5-(hydroxymethyl)furfural (HMF), fermentation inhibitor increased too because residence time increased in the subcritical region owing to decrease of reaction rate. Meanwhile, though the yield of glucose is low in the supercritical region, the yield of HMF decreased compared with the subcritical region; and at the minimum yield of HMF (380 °C, 25 MPa), the yield of glucose was 21.4%. The decomposition of cellobiose followed first-order kinetics and the activation energy for the decomposition of cellobiose was 51.05 kJ/mol at 40MPa.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom