z-logo
open-access-imgOpen Access
Trace element geochemistry of Amba Dongar carbonatite complex, India: Evidence for fractional crystallization and silicate-carbonate melt immiscibility
Author(s) -
Jyotiranjan S. Ray,
P. N. Shukla
Publication year - 2004
Publication title -
journal of earth system science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.444
H-Index - 52
eISSN - 0973-774X
pISSN - 0253-4126
DOI - 10.1007/bf02704020
Subject(s) - carbonatite , silicate , trace element , geochemistry , fractional crystallization (geology) , geology , carbonate , mantle (geology) , melt inclusions , mineralogy , crystallization , partition coefficient , chemistry , organic chemistry , chromatography
Carbonatites are believed to have crystallized either from mantle-derived primary carbonate magmas or from secondary melts derived from carbonated silicate magmas through liquid immiscibility or from residual melts of fractional crystallization of silicate magmas. Although the observed coexistence of carbonatites and alkaline silicate rocks in most complexes, their coeval emplacement in many, and overlapping initial87Sr/86Sr and143Nd/144Nd ratios are supportive of their cogenesis; there have been few efforts to devise a quantitative method to identify the magmatic processes. In the present study we have made an attempt to accomplish this by modeling the trace element contents of carbonatites and coeval alkaline silicate rocks of Amba Dongar complex, India. Trace element data suggest that the carbonatites and alkaline silicate rocks of this complex are products of fractional crystallization of two separate parental melts. Using the available silicate melt-carbonate melt partition coefficients for various trace elements, and the observed data from carbonatites, we have tried to simulate trace element distribution pattern for the parental silicate melt. The results of the modeling not only support the hypothesis of silicate-carbonate melt immiscibility for the evolution of Amba Dongar but also establish a procedure to test the above hypothesis in such complexes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom