z-logo
open-access-imgOpen Access
Isolation and characterization of rat primary lung cells
Author(s) -
Daniela S. Bundschuh,
Stefan Uhlig,
Marcel Leist,
Achim Sauer,
Albrecht Wendel
Publication year - 1995
Publication title -
in vitro cellular and developmental biology - animal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.59
H-Index - 61
eISSN - 1543-706X
pISSN - 1071-2690
DOI - 10.1007/bf02634089
Subject(s) - ec50 , paraquat , collagenase , lung , microbiology and biotechnology , biology , viability assay , in vitro , andrology , chemistry , biochemistry , medicine , enzyme
Lung cell culture may be useful as an in vitro alternative to study the susceptibility of the lung to various toxic agents. Lungs from female Wistar rats were enzymatically digested by recirculating perfusion through the pulmonary artery with a sequence of solutions containing deoxyribonuclease, chymopapain, pronase, collagenase, and elastase. Lung tissue was microdissected and resuspended and the cells obtained were washed by centrifugation. By this isolation method, 2 x 10(8) cells per rat lung were obtained with an average viability of 97%. Lung cells cultured in medium containing antibiotics and serum maintained a viability of > 70% for 5 d. Rat primary lung cells were exposed to various toxic agents and their viability was assessed by formazan production capacity after 18 h of incubation. Compared to rat and mouse hepatocyte cultures (EC50 = 5.8 mM), rat primary lung cells were much more susceptible to hydrogen peroxide (EC50 = 0.6 mM). All cell types were equally sensitive to the more potent toxicant tert-butylhydroperoxide (EC50 = 0.1 mM). Paraquat was more toxic to lung cells (EC50 = 0.03 mM) than to rat (EC50 = 2.8 mM) and mouse (EC50 = 0.2 mM) hepatocytes. In contrast, rat lung cells were less sensitive to sodium nitroprusside (EC50 = 2.6 mM) compared to rat (EC50 = 0.2 mM) and mouse (EC50 = 0.03 mM) hepatocytes. Nitrofurantoin and menadione (at EC50 = 0.04 mM and 0.006 mM, respectively) were more toxic to rat lung and liver cells than to murine hepatocytes (EC50 = 0.2 mM and 0.04 mM, respectively). Our findings demonstrate the applicability of this rat primary lung cell culture for studying the effects of lung toxicants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom