The monotone circuit complexity of boolean functions
Author(s) -
Noga Alon,
Ravi B. Boppana
Publication year - 1987
Publication title -
combinatorica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.106
H-Index - 58
eISSN - 1439-6912
pISSN - 0209-9683
DOI - 10.1007/bf02579196
Subject(s) - monotone polygon , mathematics , clique , boolean function , circuit complexity , combinatorics , boolean circuit , discrete mathematics , exponential function , electronic circuit , upper and lower bounds , function (biology) , graph , mathematical analysis , geometry , electrical engineering , evolutionary biology , biology , engineering
Recently, Razborov obtained superpolynomial lower bounds for monotone circuits that cliques in graphs. In particular, Razborov showed that detecting cliques of sizes in a graphm vertices requires monotone circuits of size Ω(m s /(logm)2s ) for fixeds, and sizem Ω(logm) form/4]. In this paper we modify the arguments of Razborov to obtain exponential lower bounds for circuits. In particular, detecting cliques of size (1/4) (m/logm)2/3 requires monotone circuits exp (Ω((m/logm)1/3)). For fixeds, any monotone circuit that detects cliques of sizes requiresm) s ) AND gates. We show that even a very rough approximation of the maximum clique of a graph requires superpolynomial size monotone circuits, and give lower bounds for some Boolean functions. Our best lower bound for an NP function ofn variables is exp (Ω(n 1/4 (logn)1/2)), improving a recent result of exp (Ω(n 1/8-ε)) due to Andreev.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom