z-logo
open-access-imgOpen Access
Eigenvalues and expanders
Author(s) -
Ilan Alon
Publication year - 1986
Publication title -
combinatorica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.106
H-Index - 58
eISSN - 1439-6912
pISSN - 0209-9683
DOI - 10.1007/bf02579166
Subject(s) - mathematics , bipartite graph , adjacency matrix , eigenvalues and eigenvectors , combinatorics , graph , complete bipartite graph , discrete mathematics , physics , quantum mechanics
summary:The construction of the extended double cover was introduced by N. Alon [1] in 1986. For a simple graph $G$ with vertex set $V = \lbrace v_1,v_2, \dots , v_n \rbrace $, the extended double cover of $G$, denoted $G^*$, is the bipartite graph with bipartition $(X,Y)$ where $X = \lbrace x_1, x_2, \dots ,x_n \rbrace $ and $ Y = \lbrace y_1, y_2, \cdots ,y_n \rbrace $, in which $x_i$ and $y_j$ are adjacent iff $i=j$ or $v_i$ and $v_j$ are adjacent in $G$. In this paper we obtain formulas for the characteristic polynomial and the spectrum of $G^*$ in terms of the corresponding information of $G$. Three formulas are derived for the number of spanning trees in $G^*$ for a connected regular graph $G$. We show that while the extended double covers of cospectral graphs are cospectral, the converse does not hold. Some results on the spectra of the $n$th iterared double cover are also presented

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom