z-logo
open-access-imgOpen Access
Hybrid methods for large sparse nonlinear least squares
Author(s) -
Ladislav Lukšan
Publication year - 1996
Publication title -
journal of optimization theory and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.109
H-Index - 91
eISSN - 1573-2878
pISSN - 0022-3239
DOI - 10.1007/bf02275350
Subject(s) - hessian matrix , jacobian matrix and determinant , mathematics , sparse approximation , theory of computation , nonlinear system , residual , mathematical optimization , sparse matrix , non linear least squares , algorithm , computer science , estimation theory , gaussian , physics , quantum mechanics
Hybrid methods are developed for improving the Gauss-Newton method in the case of large residual or ill-conditioned nonlinear least-square problems. These methods are used usually in a form suitable for dense problems. But some standard approaches are unsuitable, and some new possibilities appear in the sparse case. We propose efficient hybrid methods for various representations of the sparse problems. After describing the basic ideas that help deriving new hybrid methods, we are concerned with designing hybrid methods for sparse Jacobian and sparse Hessian representations of the least-square problems. The efficiency of hybrid methods is demonstrated by extensive numerical experiments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom