On integral bernstein operators in some classes of measurable bivariate functions
Author(s) -
Roman Taberski
Publication year - 1994
Publication title -
georgian mathematical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.277
H-Index - 27
eISSN - 1572-9176
pISSN - 1072-947X
DOI - 10.1007/bf02254733
Subject(s) - mathematics , bivariate analysis , complex plane , section (typography) , bernstein polynomial , fourier integral operator , pure mathematics , approximations of π , mathematical analysis , measurable function , operator theory , bounded function , statistics , advertising , business
The two main theorems are concerned with the approximations of (complex-valued) functions on the real plane by sums of Bernstein pseudoentire functions. They are formulated and proved in Section 4, after prior determination of the suitable integral operators. Analogous results for pseudopolynomial approximations were obtained by Brudnyî, Gonska, and Jetter ([2],[3]).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom