Fractal properties of critical invariant curves
Author(s) -
Brian R. Hunt,
Konstantin Khanin,
Yakov G. Sinai,
James A. Yorke
Publication year - 1996
Publication title -
journal of statistical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.71
H-Index - 115
eISSN - 1572-9613
pISSN - 0022-4715
DOI - 10.1007/bf02175565
Subject(s) - singularity , mathematics , rotation number , invariant (physics) , fractal dimension , computation , fractal , mathematical analysis , invariant measure , pure mathematics , mathematical physics , algorithm , ergodic theory
We examine the dimension of the invariant measure for some singular circle homeomorphisms for a variety of rotation numbers, through both the thermodynamic formalism and numerical computation. The maps we consider include those induced by the action of the standard map on an invariant curve at the critical parameter value beyond which the curve is destroyed. Our results indicate that the dimension is universal for a given type of singularity and rotation number, and that among all rotation numbers, the golden mean produces the largest dimension.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom