Mixed methods on quadrilaterals and hexahedra
Author(s) -
Philip T. Keenan
Publication year - 1994
Publication title -
numerical algorithms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.981
H-Index - 64
eISSN - 1572-9265
pISSN - 1017-1398
DOI - 10.1007/bf02140687
Subject(s) - quadrilateral , mathematics , polygon mesh , finite element method , mathematical proof , hexahedron , theory of computation , nonlinear system , bilinear interpolation , algebra over a field , calculus (dental) , geometry , pure mathematics , algorithm , statistics , physics , quantum mechanics , thermodynamics , medicine , dentistry
We describe a new family of discrete spaces suitable for use with mixed methods on certain quadrilateral and hexahedral meshes. The new spaces are natural in the sense of differential geometry, so all the usual mixed method theory, including the hybrid formulation, carries over to these new elements with proofs unchanged. Because transforming general quadrilaterals into squares introduces nonlinearity and because mixed methods involve the divergence operator, the new spaces are more complicated than either the corresponding Raviart-Thomas spaces for rectangles or corresponding finite element spaces for quadrilaterals. The new spaces are also limited to meshes obtained from a rectangular mesh through the application of a single global bilinear transformation. Despite this limitation, the new elements may be useful in certain topologically regular problems, where initially rectangular grids are deformed to match features of the physical region. They also illustrate the difficulties introduced into the theory of mixed methods by nonlinear transformations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom