z-logo
open-access-imgOpen Access
Rubber bands, convex embeddings and graph connectivity
Author(s) -
Nathan Linial,
László Lovász,
Avi Wigderson
Publication year - 1988
Publication title -
combinatorica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.106
H-Index - 58
eISSN - 1439-6912
pISSN - 0209-9683
DOI - 10.1007/bf02122557
Subject(s) - combinatorics , mathematics , convex hull , vertex (graph theory) , discrete mathematics , regular polygon , graph , geometry
We give various characterizations ofk-vertex connected graphs by geometric, algebraic, and “physical” properties. As an example, a graphG isk-connected if and only if, specifying anyk vertices ofG, the vertices ofG can be represented by points of ℝk−1 so that nok are on a hyper-plane and each vertex is in the convex hull of its neighbors, except for thek specified vertices. The proof of this theorem appeals to physics. The embedding is found by letting the edges of the graph behave like ideal springs and letting its vertices settle in equilibrium.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom