On multiplicative graphs and the product conjecture
Author(s) -
Roland Häggkvist,
Pavol Hell,
Donald J. Miller,
Víctor Neumann Lara
Publication year - 1988
Publication title -
combinatorica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.106
H-Index - 58
eISSN - 1439-6912
pISSN - 0209-9683
DOI - 10.1007/bf02122553
Subject(s) - mathematics , combinatorics , conjecture , multiplicative function , homomorphism , undirected graph , property (philosophy) , discrete mathematics , class (philosophy) , product (mathematics) , graph , computer science , mathematical analysis , philosophy , geometry , epistemology , artificial intelligence
We study the following problem: which graphsG have the property that the class of all graphs not admitting a homomorphism intoG is closed under taking the product (conjunction)? Whether all undirected complete graphs have the property is a longstanding open problem due to S. Hedetniemi. We prove that all odd undirected cycles and all prime-power directed cycles have the property. The former result provides the first non-trivial infinite family of undirected graphs known to have the property, and the latter result verifies a conjecture of Nešetřil and Pultr These results allow us (in conjunction with earlier results of Nešetřil and Pultr [17], cf also [7]) to completely characterize all (finite and infinite, directed and undirected) paths and cycles having the property. We also derive the property for a wide class of 3-chromatic graphs studied by Gerards, [5].
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom