z-logo
open-access-imgOpen Access
Quotient tree partitioning of undirected graphs
Author(s) -
Anders Edenbrandt
Publication year - 1986
Publication title -
bit numerical mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.904
H-Index - 59
eISSN - 1572-9125
pISSN - 0006-3835
DOI - 10.1007/bf01933740
Subject(s) - quotient , combinatorics , mathematics , undirected graph , graph , discrete mathematics , tree (set theory)
The partitioning of the vertices of an undirected graph, in a way that makes its quotient graph a tree, mirrors a way of permuting a square symmetric matrix to allow its factoring with little fil-in. We analyze the complexity of finding the best partitioning and show that it is NP-complete. We also give a new and simpler implementation of an algorithm that finds a maximal quotient tree.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom