Computing the field of values and pseudospectra using the Lanczos method with continuation
Author(s) -
Thierry Braconnier,
Nicholas J. Higham
Publication year - 1996
Publication title -
bit numerical mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.904
H-Index - 59
eISSN - 1572-9125
pISSN - 0006-3835
DOI - 10.1007/bf01731925
Subject(s) - lanczos resampling , lanczos algorithm , eigenvalues and eigenvectors , computation , hermitian matrix , mathematics , field (mathematics) , continuation , chebyshev filter , matrix (chemical analysis) , algorithm , computer science , mathematical analysis , pure mathematics , physics , materials science , quantum mechanics , composite material , programming language
The field of values and pseudospectra are useful tools for understanding the behaviour of various matrix processes. To compute these subsets of the complex plane it is necessary to estimate one or two eigenvalues of a large number of parametrized Hermitian matrices; these computations are prohibitively expensive for large, possibly sparse, matrices, if done by use of the QR algorithm. We describe an approach based on the Lanczos method with selective reorthogonalization and Chebyshev acceleration that, when combined with continuation and a shift and invert technique, enables efficient and reliable computation of the field of values and pseudospectra for large matrices. The idea of using the Lanczos method with continuation to compute pseudospectra is not new, but in experiments reported here our algorithm is faster and more accurate than existing algorithms of this type
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom