z-logo
open-access-imgOpen Access
Observables at infinity and states with short range correlations in statistical mechanics
Author(s) -
Oscar E. Lanford,
David Ruelle
Publication year - 1969
Publication title -
communications in mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.662
H-Index - 152
eISSN - 1432-0916
pISSN - 0010-3616
DOI - 10.1007/bf01645487
Subject(s) - observable , metastability , cluster expansion , thermodynamic equilibrium , statistical physics , bounded function , statistical mechanics , mathematics , state (computer science) , physics , quantum mechanics , mathematical analysis , algorithm
We say that a representation of an algebra of local observables has short-range correlations if any observable which can be measured outside all bounded sets is a multiple of the identity, and that a state has finite range correlations if the corresponding cyclic representation does. We characterize states with short-range correlations by a cluster property. For classical lattice systems and continuous systems with hard cores, we give a definition of equilibrium state for a specific interaction, based on a local version of the grand canonical prescription; an equilibrium state need not be translation invariant. We show that every equilibrium state has a unique decomposition into equilibrium states with short-range correlations. We use the properties of equilibrium states to prove some negative results about the existence of metastable states. We show that the correlation functions for an equilibrium state satisfy the Kirkwood-Salsburg equations; thus, at low activity, there is only one equilibrium state for a given interaction, temperature, and chemical potential. Finally, we argue heuristically that equilibrium states are invariant under time-evolution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom