Proof of the Seymour conjecture for large graphs
Author(s) -
János Komlós,
Gábor N. Sárközy,
Endre Szemerédi
Publication year - 1998
Publication title -
annals of combinatorics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.467
H-Index - 25
eISSN - 0219-3094
pISSN - 0218-0006
DOI - 10.1007/bf01626028
Subject(s) - conjecture , combinatorics , mathematics , hamiltonian path , discrete mathematics , hamiltonian (control theory) , graph , mathematical optimization
Paul Seymour conjectured that any graphG of ordern and minimum degree of at leastk/k+1n contains thekth power of a Hamiltonian cycle. Here, we prove this conjecture for sufficiently largen.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom