An inequality onS wave bound states, with correct coupling constant dependence
Author(s) -
A. Martin
Publication year - 1977
Publication title -
communications in mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.662
H-Index - 152
eISSN - 1432-0916
pISSN - 0010-3616
DOI - 10.1007/bf01614552
Subject(s) - constant (computer programming) , bound state , coupling constant , upper and lower bounds , physics , mathematics , combinatorics , mathematical physics , quantum mechanics , mathematical analysis , computer science , programming language
We prove that the number ofS wave bound states in a spherically symmetric potentialgV(r) is less than1$$g^{1/2} \left[ {\int\limits_0^\infty {r^2 V^ - (r)dr} \int\limits_0^\infty {V^ - (r)dr} } \right]^{1/4}$$ whereV− is the attractive part of the potential, in units where ħ2/2M=1.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom