First-order risk aversion and non-differentiability
Author(s) -
Uzi Segal,
Avia Spivak
Publication year - 1997
Publication title -
economic theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.572
H-Index - 58
eISSN - 1432-0479
pISSN - 0938-2259
DOI - 10.1007/bf01213452
Subject(s) - differentiable function , lottery , risk aversion (psychology) , order (exchange) , mathematical economics , mathematics , economics , public finance , first order , econometrics , expected utility hypothesis , pure mathematics , statistics , finance , macroeconomics
Summary First-order risk aversion happens when the risk premiump a decision maker is willing to pay to avoid the lottery$$t \cdot \tilde \varepsilon , E[\tilde \varepsilon ] = 0$$, is proportional, for smallt, tot. Equivalently,$$\partial \pi /\partial t|_{ t = 0^ + } > 0$$. We show that first-order risk aversion is equivalent to a certain non-differentiability of some of the local utility functions (Machina [7]).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom